博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
TCP链接(三次握手)和释放(四次握手)
阅读量:4217 次
发布时间:2019-05-26

本文共 1359 字,大约阅读时间需要 4 分钟。

转自:

TCP报文段首部格式:

序号:本报文段所发送的数据的第一个字节的序号。

确认号ack期待收到对方下一个报文段的第一个数据字节的序号

确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效

同步SYN连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。

              若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。

终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

还要再发送一次确认是为了,防止已失效的连接请求报文段突然又传到了B,因而产生错误。

已失效的报文段:正常情况下:A发出连接请求,但因为丢失了,故而不能收到B的确认。于是A重新发出请求,然后收到确认,建立连接,数据传输完毕后,释放连接,A发了2个,一个丢掉,一个到达,没有“已失效的报文段”

但是,某种情况下,A的第一个在某个节点滞留了,延误到达,本来这是一个早已失效的报文段,但是在A发送第二个,并且得到B的回应,建立了连接以后,这个报文段竟然到达了,于是B就认为,A又发送了一个新的请求,于是发送确认报文段,同意建立连接,假若没有三次的握手,那么这个连接就建立起来了(有一个请求和一个回应),此时,A收到B的确认,但A知道自己并没有发送建立连接的请求,因为不会理睬B的这个确认,于是呢,A也不会发送任何数据,而B呢却以为新的连接建立了起来,一直等待A发送数据给自己,此时B的资源就被白白浪费了。但是采用三次握手的话,A就不发送确认,那么B由于收不到确认,也就知道并没有要求建立连接。

四次握手(两个二次握手)

B收到连接释放报文段后就立即发送确认,然后就进入close-wait状态,此时TCP服务器进程就通知高层应用进程,因而从A到B的连接就释放了。此时是“半关闭”状态。即A不可以发送给B,但是B可以发送给A。

此时,若B没有数据报要发送给A了,其应用进程就通知TCP释放连接,然后发送给A连接释放报文段,并等待确认。


A发送确认后,进入time-wait,注意,此时TCP连接还没有释放掉,然后经过时间等待计时器设置的2MSL(两倍报文段最大生存时间)后,A才进入close状态。

为什么要等待呢?

①、为了保证A发送的最后一个ACK报文段能够到达B即最后这个确认报文段很有可能丢失,那么B会超时重传,然后A再一次确认,同时启动2MSL计时器,如此下去。如果没有等待时间,发送完确认报文段就立即释放连接的话,B就无法重传了(连接已被释放,任何数据都不能出传了),因而也就收不到确认,就无法按照步骤进入CLOSE状态,即必须收到确认才能close。

②、防止“已失效的连接请求报文段”出现在连接中经过2MSL,那些在这个连接持续的时间内,产生的所有报文段就可以都从网络中消失。即在这个连接释放的过程中会有一些无效的报文段滞留在楼阁结点,但是呢,经过2MSL这些无效报文段就肯定可以发送到目的地,不会滞留在网络中。这样的话,在下一个连接中就不会出现上一个连接遗留下来的请求报文段了。

可以看出:B结束TCP连接的时间比A早一点,因为B收到确认就断开连接了,而A还得等待2MSL.

转载地址:http://rutmi.baihongyu.com/

你可能感兴趣的文章
不做单元测试?小心得不偿失!嵌入式系统单元测试工具,自动生成测试用例
查看>>
一种实用的联网汽车无线攻击方法及车载安全协议
查看>>
光靠欺骗检测是不够的:对抗多目标跟踪的攻击
查看>>
基于微区块链的V2X地理动态入侵检测
查看>>
面向V2C场景的ADAS数字孪生模型构建方法
查看>>
Comma2k19数据集使用
查看>>
面向自动驾驶车辆验证的抽象仿真场景生成
查看>>
一种应用于GPS反欺骗的基于MLE的RAIM改进方法
查看>>
筑牢网络安全基座,安全护航经济数字化转型大会成功举办
查看>>
单元测试工具:单元测试的测试前置驱动条件
查看>>
汽车智不智能?“智能座舱”有话说
查看>>
自动驾驶汽车CAN总线数字孪生建模(一)
查看>>
自动驾驶汽车CAN总线数字孪生建模(二)
查看>>
自动驾驶汽车GPS系统数字孪生建模(一)
查看>>
自动驾驶汽车GPS系统数字孪生建模(二)
查看>>
上海控安入选首批工控安全防护能力贯标咨询机构名单
查看>>
自动驾驶汽车传感器数字孪生建模(一)
查看>>
CUDA 学习(四)、线程
查看>>
CUDA 学习(五)、线程块
查看>>
CUDA 学习(八)、线程块调度
查看>>